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INTRODUCTION AND PROBLEM STATEMENT
Efficient, natural human communication relies on implicit shared knowledge and underlying reasoning pro-
cesses. Despite rapid progress in language-enabled AI agents for tasks like question answering, state-of-the-art
systems struggle to explain decisions in natural language. In this work, we present novel multi-hop explanation
approaches which integrate efficient syntactic retrieval methods with flexible semantic modeling methods.

We explore the problem of generating multi-hop explanations to support the answer to a natural language
question, where the explanation chain is generated from an unstructured corpus of declarative facts. Unstruc-
tured natural language corpora are suitable knowledge resources for human-AI interaction, as humans can easily
support reasoning by providing their own commonsense knowledge in short, natural language statements.
This carefully restricted problem of explanation generation consists of two key challenges:

1. Retrieval of candidate supporting evidence from the corpus
2. Multi-hop reasoning to connect pieces of evidence into a valid explanation to justify the answer

DATASETS
Question Answering via Sentence Composition
(QASC) consists of about 10,000 multiple-choice sci-
ence questions, where each question requires compos-
ing 2 facts from a corpus of about 17 million declara-
tive facts to connect the question and its answer [1]:

Q: Differential heating of air can be harnessed for what?

A: electricity production

Explanation:
1. Differential heating of air produces wind.
2. Wind is used for producing electricity.

Figure 1: Example of a question (Q), answer (A), and 2-hop
explanation from QASC [1].

QASC includes a gold, human-curated explanation
from the corpus for each question-answer pair. We
tackle the difficult task of generating valid explana-
tions from the QASC Corpus. We compare systems’
success on this task by their gold retrieval rate: the
percentage of question-answer pairs for which the
gold explanation was successfully reproduced.

Explainable QASC [2] generates 10 additional expla-
nations for each question-answer pair (hand-labeled
as valid or invalid), providing a baseline for the task.

SYNTACTIC EXPLANATION
We indexed the corpus into ElasticSearch, a fast syn-
tactic search engine based on keyword overlap. Fol-
lowing [2], we used a simple syntactic explanation
pipeline to generate 2-hop explanations for QASC:
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Figure 2: We use the question-answer (Q-A) pair to query
the corpus for N facts, each of which is used to query for M
second facts. The top-scored K fact pairs are returned.

By increasing the hyperparameters (K,N,M) from
their original values (20, 4, 10), we expand and diver-
sify the search, improving the gold retrieval rate:

N M K Gold Retrieval Rate (%)

20 4 10 31.1
20 4 200 37.0

200 200 200 46.5

Table 1: Gold explanation chain retrieval rates for syntactic
multi-hop explanation on QASC validation set.
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SEMANTIC EXPLANATION
We then indexed the corpus into a dense passage retrieval (DPR) index [3], which we trained using question-
answer pairs and gold explanation chains from QASC. To reduce error accumulation when generating a multi-
hop explanation with this approach, we additionally train a lightweight, feedforward fact re-encoder. Given
the learned embeddings of a question-answer pair and the first fact from its gold explanation, the re-encoder is
trained to generate a new fact embedding similar to that of the gold second fact. At inference time, we use the
following semantic explanation pipeline to generate 2-hop explanations for QASC:
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Figure 3: Semantic explanation pipeline. Facts are encoded using a fact encoder (in blue) and stored in a dense index, while
the question-answer pair is encoded by a query encoder (in yellow). Maximum inner product search (MIPS) is used to query
the index for N candidate first facts, which are each re-encoded (in green), then used to query the index again for M candidate
second facts. All candidate first and second facts are paired, and the top-scored K chains are returned as explanations.

In Table 2, we compare the gold retrieval rate of our
semantic pipeline with the syntactic pipeline, our ex-
panded syntactic pipeline, and a hybrid pipeline us-
ing facts retrieved by both the expanded syntactic and
semantic pipelines. Among the top 200 proposed ex-
planations by each approach, our hybrid approach im-
proves the gold retrieval rate by up to 12.9%.

Approach Gold Retrieval Rate (%)
Validation Test

syntactic 37.0 40.2
syntactic (exp.) 46.5 49.3

semantic 10.8 13.9
syntactic (exp.) + semantic 49.9 51.1

Table 2: Gold retrieval rates (top K = 200 candidates) for
combinations of multi-hop retrieval approaches on QASC.

RE-RANKING EXPLANATIONS

As a set of K = 200 explanations for a single question-
answer pair may become unpractical for human use,
we lastly apply an explanation re-ranker to filter the
proposed explanations to only the best K = 10 candi-
dates. To implement the re-ranker, we fine-tune pre-
trained language models [4, 5] to classify whether an
explanation chain is valid for a question-answer pair.
As shown in Table 3, when compared to the syntactic
approach used in [2], our hybrid approach improves
the gold retrieval rate by up to 7% after re-ranking.

Retrieval Approach Re-Ranker Gold RR (%)
Val. Test

syntactic [2] – 31.1 34.1

syntactic (exp.) BERT 36.3 34.0
syntactic (exp.) + semantic BERT 36.4 34.1

syntactic (exp.) ROBERTA 37.9 36.2
syntactic (exp.) + semantic ROBERTA 38.1 36.4

Table 3: Gold retrieval rates (top K = 10 candidates) for
combinations of multi-hop retrieval approaches on QASC,
re-ranked by fine-tuned language models [4, 5].

CONCLUSION
In this work, by utilizing a small amount of ground truth supervision, we explored approaches to improve the
generation of multi-hop explanations from a corpus of declarative facts. We showed that both fast, syntactic
methods and slow, semantic methods are useful for gathering relevant evidence for explanation.


