Mind the Gap: How BabyLMs Learn Filler-Gap Dependencies

Chi-Yun Chang, Xueyang Huang, Humaira Nasir, Shane Storks, Olawale Akingbade, Huteng Dai

University of Michigan

Introduction

- Humans acquire complex syntactic dependencies such as filler-gap relationships from limited and often noisy input, raising the question of whether artificial neural language models can achieve the same (Gagliardi et al., 2016; Wilcox et al., 2018; Howitt et al., 2024).
- Filler-gap dependencies provide a critical test of syntactic learning because they require models to track long-distance relationships and respect island constraints.
- The BabyLM Challenge offers child-oriented corpora for training language models on resource-limited input, allowing a developmentally realistic framework to examine syntactic acquisition in smaller-scale models (Hu et al., 2024).

Research Question: Can language models trained on predominantly child-oriented, childsized input acquire filler-gap dependencies, generalize across constructions, and respect structural constraints such as island effects?

Methodology	
	the acquisition of filler-gap dependencies by GPT-2 models trained following established methods (Wilcox et al., 2018; Ozaki et al.,
Models Trained	GPT-2 (10M tokens and 100M tokens) on BabyLM Challenge corpora (70% child-directed/oriented input)
Additional Models Assessed	ConcreteGPT (10M tokens) (Capone et al., 2024) and BabbleGPT (100M tokens) (Goriely et al., 2024)
Upper Bound Model	A threshold GPT-2 pretrained on a 40GB general corpus
Test Materials	A suite of sentences for four major syntactic constructions
Experimental Design	2×2 factorial setup: manipulate presence of fillers (wh-licensors) and gaps to yield grammatical vs. ungrammatical conditions
Evaluation Metrics	Surprisal at critical regions; wh-licensing scores (filler-gap interaction); flip tests (surprisal reverses with gap presence); grammaticality division tests (surprisal difference: grammatical vs. ungrammatical)
Statistical Analysis	Tests are conducted through mixed-effects linear regression with random intercepts by sentence set to test acquisition of filler-gap dependencies and structural constraints
	Table 1. Methodology summary

Construction Types

Here we outline each construction type and what aspect of filler-gap behavior it is designed to test.

Types	Examples
A. Gap Distance	They found out [that / what] _{filler} the baker [who lives nearby / who visits the bakery every Sunday] _{mod length} gave [a free loaf /] _{gap} to the customer this morning.
B. Double Gaps	John knows [that / who] _{filler} [the police /] _{gap1} found [the thief /] _{gap2} in the alley.
C. Wh-Islands	You mentioned [that / *what] filler your coworker stated { [whether] complementizer the intern sent [the wrong file / *] gap to the client } wh-island
D. Adjunct Islands We found out [that / *what] filler [the parade started after] adjunct pos trigger {the mayor of the city gave [the opening speech / *] gap in front of the cheering crowd.} adjunct island back	

Table 2. Construction types illustrating filler-gap dependencies. Bold, colored spans are manipulated factors: mod length varies modifier length; complementizer varies the word that introduces the embedded clause (e.g., that, whether); adjunct pos trigger varies where the adjunct island occurs; filler and gap indicate the filler and gap sites.

Conclusion and Discussion

- Larger GPT-2 models show stronger filler-gap learning, but still fail on complex constraints like adjunct islands.
- All models show weaker performance on long-distance dependencies, mirroring the late acquisition of such patterns in child language.
- Flip test shows that even stronger models do not fully capture filler-gap bijectivity, suggesting inductive biases are needed for human-like generalization.
- BabyLM models outperform GPT-2-10M on several constructions but show mixed results at 100M, indicating modest gains from specialized training yet persistent difficulty with complex island constraints.

References

Luca Capone, Alessandro Bondielli, and Alessandro Lenci. Concretegpt: A baby gpt-2 based on lexical concreteness. In BabyLM

Challenge, EMNLP 2024, 2024. Poster presentation.

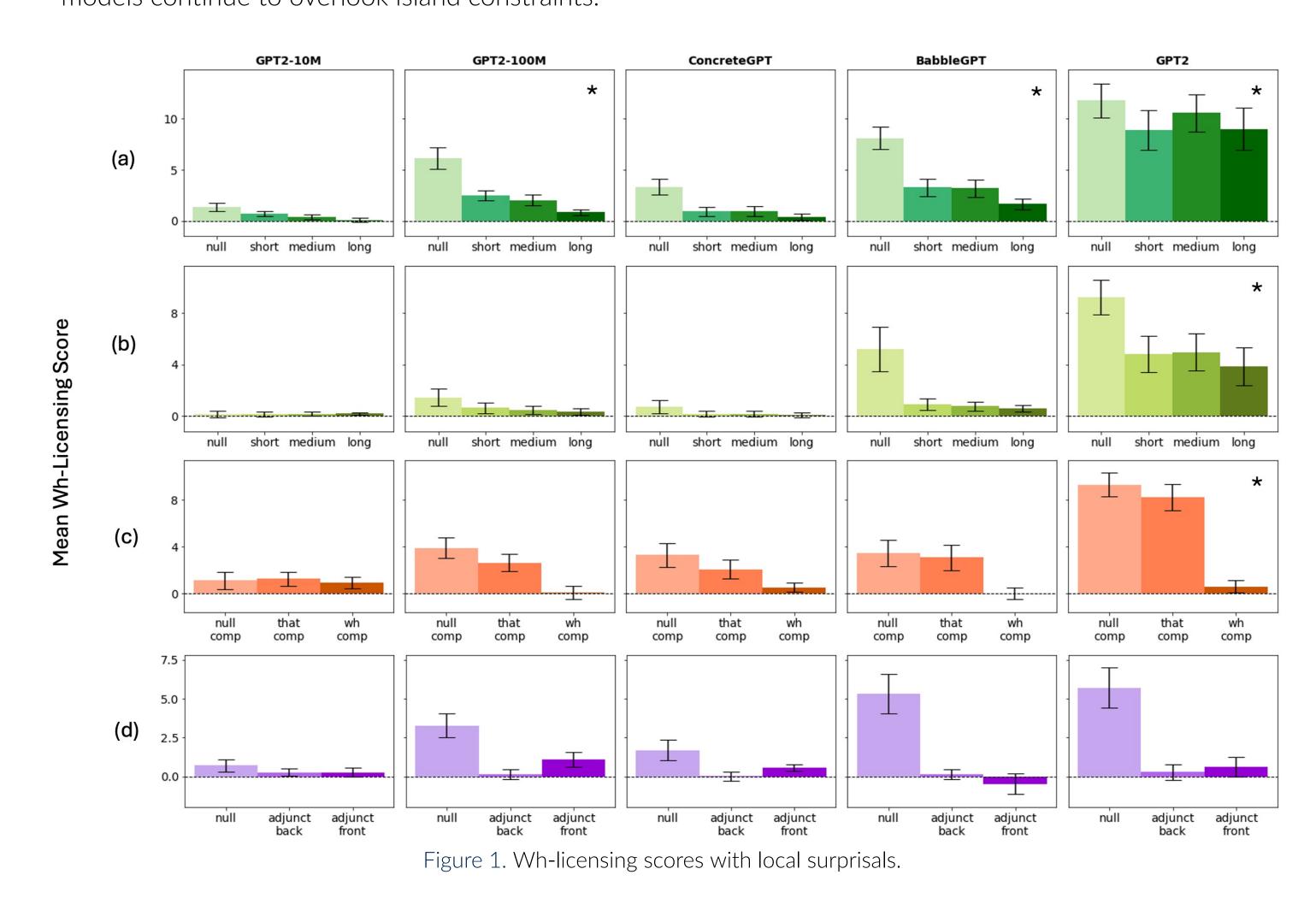
Annie Gagliardi, Tara M Mease, and Jeffrey Lidz. Discontinuous development in the acquisition of filler-gap dependencies: Evidence from 15-and 20-month-olds. Language Acquisition, 23:234-260, 2016.

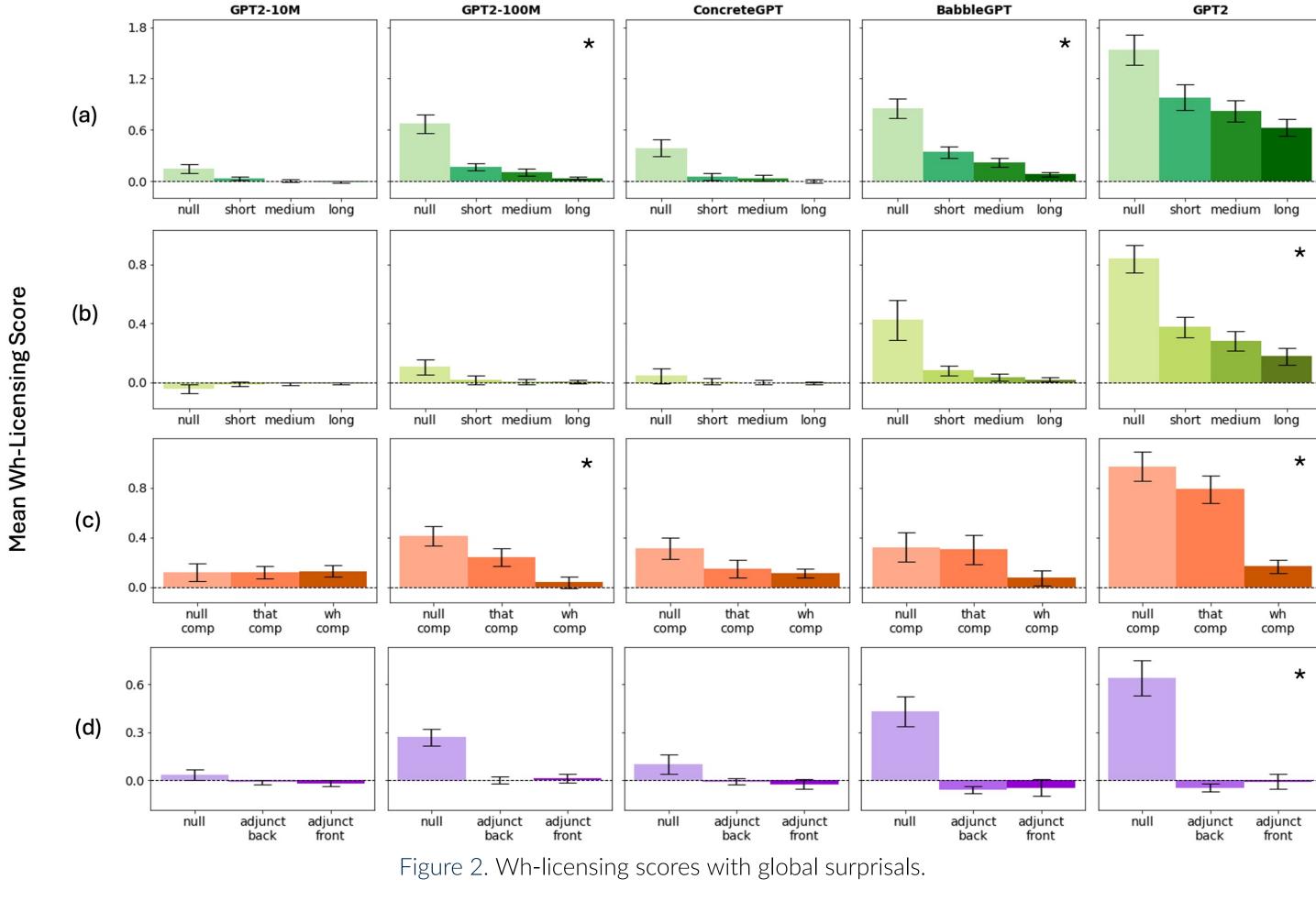
Zébulon Goriely, Richard Diehl Martinez, Andrew Caines, Paula Buttery, and Lisa Beinborn. From babble to words: Pre-training language models on continuous streams of phonemes. In BabyLM Challenge, EMNLP 2024, 2024.

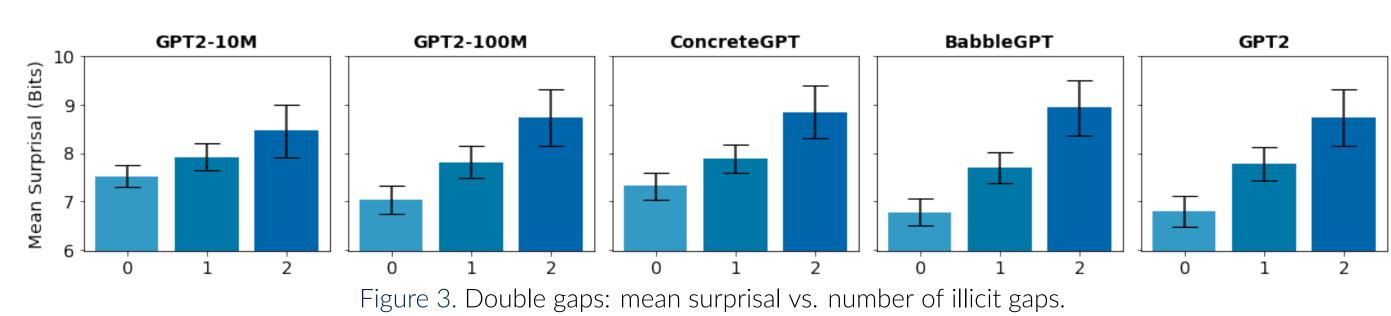
Kevin Howitt, Sunil Nair, Amelia Dods, and Robert M Hopkins. Generalizations across filler-gap dependencies in neural language models. Proceedings of the 28th Conference on Computational Natural Language Learning, 2024.

Michael Y. Hu, Aaron Mueller, Candace Ross, Adina Williams, Tal Linzen, Chengxu Zhuang, Ryan Cotterell, Leshem Choshen, Alex Warstadt, and Ethan Gotlieb Wilcox. Findings of the second babylm challenge: Sample-efficient pretraining on developmentally plausible corpora. In BabyLM Challenge, EMNLP 2024, 2024.

Satoru Ozaki, Daniel Yurovsky, and Lauren Levin. How well do LSTM language models learn filler-gap dependencies? In Proceedings of


the Society for Computation in Linguistics 2022, pages 76-88, 2022.


Ethan Wilcox, Roger Levy, Takashi Morita, and Richard Futrell. What do RNN language models learn about filler-gap dependencies? Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, 2018.


Licensor-Gap Interaction

Each row in Figure 1 and Figure 2 represents one construction: (a) gap-distance-obj, (b) gap-distance-PP, (c) wh-islands, (d) adjunct-islands. Constructions fully learned with statistical significance (robust to intervening factors and capturing island constraints) are marked by asterisks. Figure 3 visualizes the wh-licensing scores of double gaps.

- The threshold GPT-2 model demonstrates robust acquisition of most filler-gap dependencies and partial sensitivity to island effects.
- GPT-2-10M fails to acquire any construction, while GPT-2-100M succeeds fully on gap-distance-obj and shows global licensing behavior in wh-islands, but fails to capture adjunct-island constraints.
- ConcreteGPT demonstrates global licensing behavior for wh-islands, while BabbleGPT acquires gap-distance-obj fully, and show licensing effects for wh-islands and adjunct-islands. However, both models continue to overlook island constraints.

Flip Test

- The threshold GPT-2 model passes most flip tests, capturing both directions of bijectivity and showing island awareness, though adjunct-island results are mixed.
- GPT-2-10M captures only one direction in some constructions and misses island effects, while GPT-2-100M passes the flip test for local gap-distance-obj and local wh-islands, but remains inconsistent on other island constructions.
- ConcreteGPT shows one-sided flips across constructions without island sensitivity, whereas BabbleGPT passes the flip test for local wh-islands and local adjunct-islands, demonstrating better acquisition of island constraints.

Division by Grammaticality

- The GPT-2 model passes the grammaticality test for all constructions with high statistical significance.
- GPT-2-10M passes the test for double-gaps and wh-islands. GPT-2-100M passes the test for double-gaps, wh-islands, and adjunct-islands.
- ConcreteGPT passes the test for double-gaps, wh-islands, and adjunct-islands. BabbleGPT passes the test for all constructions except for gap-distance-PP.