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Introduction Licensor-Gap Interaction

Fach row in Figure 1 and Figure 2 represents one construction: (a) gap-distance-obj, (b)

= Humans acquire complex syntactic dependencies such as filler-gap relationships from : ,
. X U X 5ab X gap-distance-PP, (c) wh-islands, (d) adjunct-islands. Constructions fully learned with

limited and often noisy input, raising the question of whether artificial neural language

models can achieve the same (Gagliardi et al., 2016: Wilcox et al., 2018: Howitt et al statistical significance (robust to intervening factors and capturing island constraints) are
2024) ) | R i marked by asterisks. Figure 3 visualizes the wh-licensing scores of double gaps.

= Filler-gap dependencies provide a critical test of syntactic learning because they require * The threshold GPT-2 model demonstrates robust acquisition of most filler-gap dependencies and partial
models to track long-distance relationships and respect island constraints. sensitivity to island effects.

. TP . " GPT-2-10M fails to acquire any construction, while GPT-2-100M succeeds fully on gap-distance-obj and
The BabyLM Challenge offers child-oriented corpora for training language models on shows global licensing behavior in wh-islands, but fails to capture adjunct-island constraints.

resource-limited input, allowing a developmentally realistic framework to examine " ConcreteGPT demonstrates global licensing behavior for wh-islands, while BabbleGPT acquires

syntactic acquisition in smaller-scale models (Hu et al., 2024). gap-distance-obj fully, and show licensing effects for wh-islands and adjunct-islands. However, both
models continue to overlook island constraints.

Research Question: Can language models trained on predominantly child-oriented, child-
sized input acquire filler-gap dependencies, generalize across constructions, and respect struc- ST2 100 GEiE Toms ConcreteGPT BabbleGPT cPT2
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tural constraints such as island effects? o
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Figure 2. Wh-licensing scores with global surprisals.
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= Larger GPT-2 models show stronger filler-gap learning, but still fail on complex EL
constraints like adjunct islands. a
= All models show weaker performance on long-distance dependencies, mirroring the u | |
late acquisition of such patterns in child language. 0 : 2 0 o2 o 1 2
. . L. Figure 3. Double gaps: mean surprisal vs. number of illicit gaps.
= Flip test shows that even stronger models do not fully capture filler-gap bijectivity,
suggesting inductive biases are needed for human-like generalization.
= BabyLM models outperform GPT-2-10M on several constructions but show mixed Flip Test
results at 100M, indicating modest gains from specialized training yet persistent
difficulty with complex island constraints. = The threshold GPT-2 model passes most flip tests, capturing both directions of bijectivity and showing

island awareness, though adjunct-island results are mixed.
" GPT-2-10M captures only one direction in some constructions and misses island effects, while
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