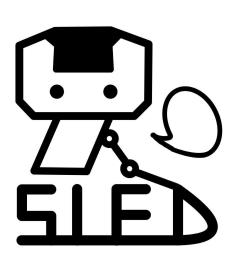


Transparent and Coherent Procedural Mistake Detection

Shane Storks, Itamar Bar-Yossef, Yayuan Li, Zheyuan Zhang, Jason J. Corso, & Joyce Chai (University of Michigan)

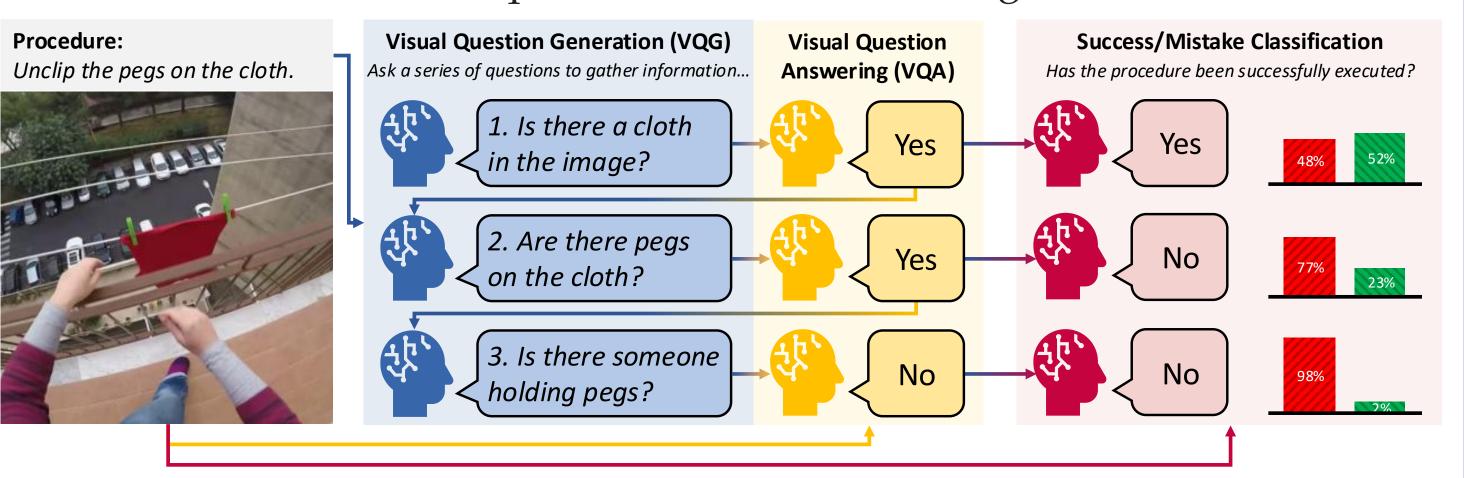


MOTIVATION

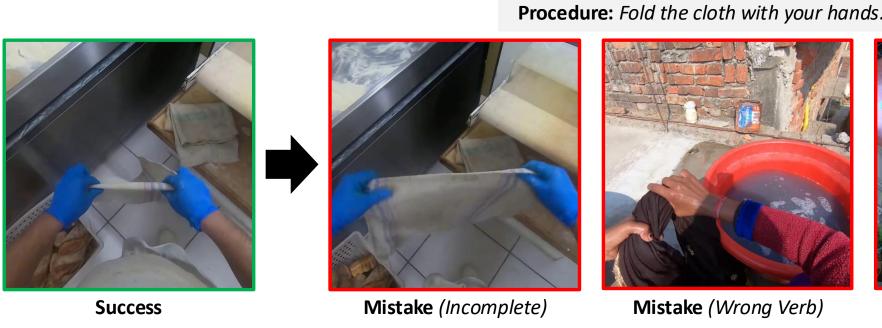
Procedural mistake detection (PMD) requires classifying whether a human (seen through egocentric video) has successfully executed a task (specified by a procedural text). Despite significant efforts, VLM performance in the wild is nonviable, and underlying knowledge and reasoning processes are opaque.

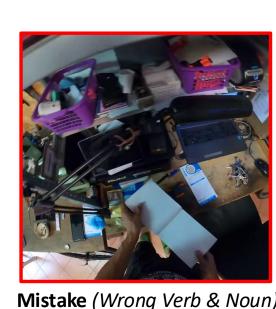
COHERENT PROCEDURAL MISTAKE DETECTION

We reformulate PMD to require a self-reflective dialog rationale from VLMs:



We generate diverse video frame mistake detection data from Ego4D [1]:

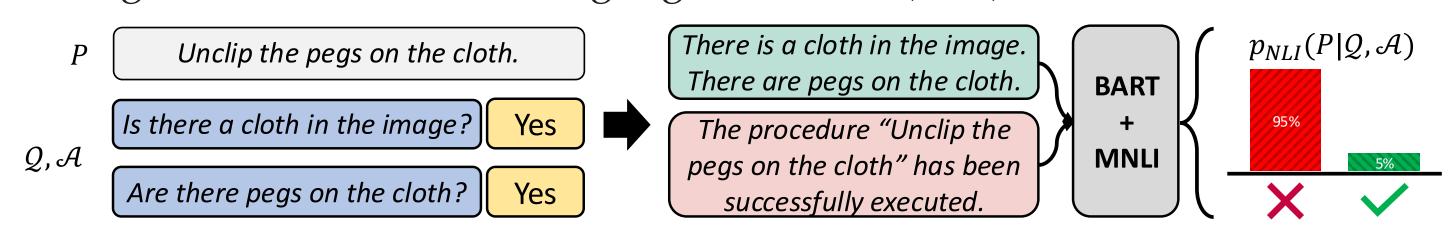




Mistake (Wrong Noun) (Sample) Train (Sample) **Test** (Sample) **Example Type** Validation 18,057 1000 Success 42,013 5,000 13,058 250 34,182 1000 99,401 5,000 250 Mistake 25,423 Incomplete 194 15,057 4,908 6,545 11,780 2,694 3,747 Wrong V Wrong N 36,434 1,853 8,914 11,843 Wrong V&N 36,130 8,907 354 1,788 12,047

RATIONALE COHERENCE METRICS

To evaluate whether evidence collected from VLMs suggests success, we leverage fine-tuned natural language inference (NLI) models:



We use the NLI model p_e to measure the **relevance** of a question Q' to the success of a procedure P, given previous questions \mathcal{Q} and answers \mathcal{A} : $\text{Rel}(Q'|T,\mathcal{Q},\mathcal{A}) = |p_e(T|\mathcal{Q} \cup Q',\mathcal{A} \cup No) - p_e(T|\mathcal{Q} \cup Q',\mathcal{A} \cup Yes)|$

Relevance is summarized by example through a mean over questions:

$$\frac{1}{n} \sum_{i=1}^{n} \text{Rel}(Q_i | T, \{Q_j : j < i\}, \{A_j : j < i\})$$

We also measure the **informativeness** of a predicted answer A' for Q':

$$Inf(A'|Q', T, Q, A) = 1 - H(p_e(T|Q \cup Q', A \cup A'))$$

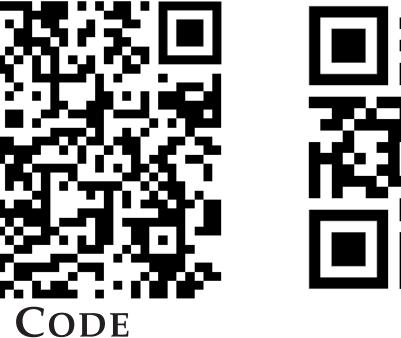
Reference-adjusted informativeness Inf* is negated if the most likely success label in p_e disagrees with the ground truth label y^* . It is summarized by example through the maximum informativeness achieved:

$$\max_{1 \le i \le n} \operatorname{Inf}^*(A_i | Q_i, T, \{Q_j : j < i\}, \{A_j : j < i\}, y^*)$$

REFERENCES

- [1] Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, et al. Ego4D: Around the World in 3,000 Hours of Egocentric Video. In IEEE/CVF Computer Vision and Pattern Recognition (CVPR), 2022.
- [2] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In NeurIPS, 2023.
- Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://arxiv.org/abs/2305.18290.

LINKS



LAB

EXPERIMENTAL RESULTS

We apply 2 interventions to the selection of candidate questions generated by LLaVA-1.5 [2] through a greedy beam search:

- 1. Coherence-based re-ranking of candidate questions
- 2. In-context learning (ICL) from 20 sets of human-written questions

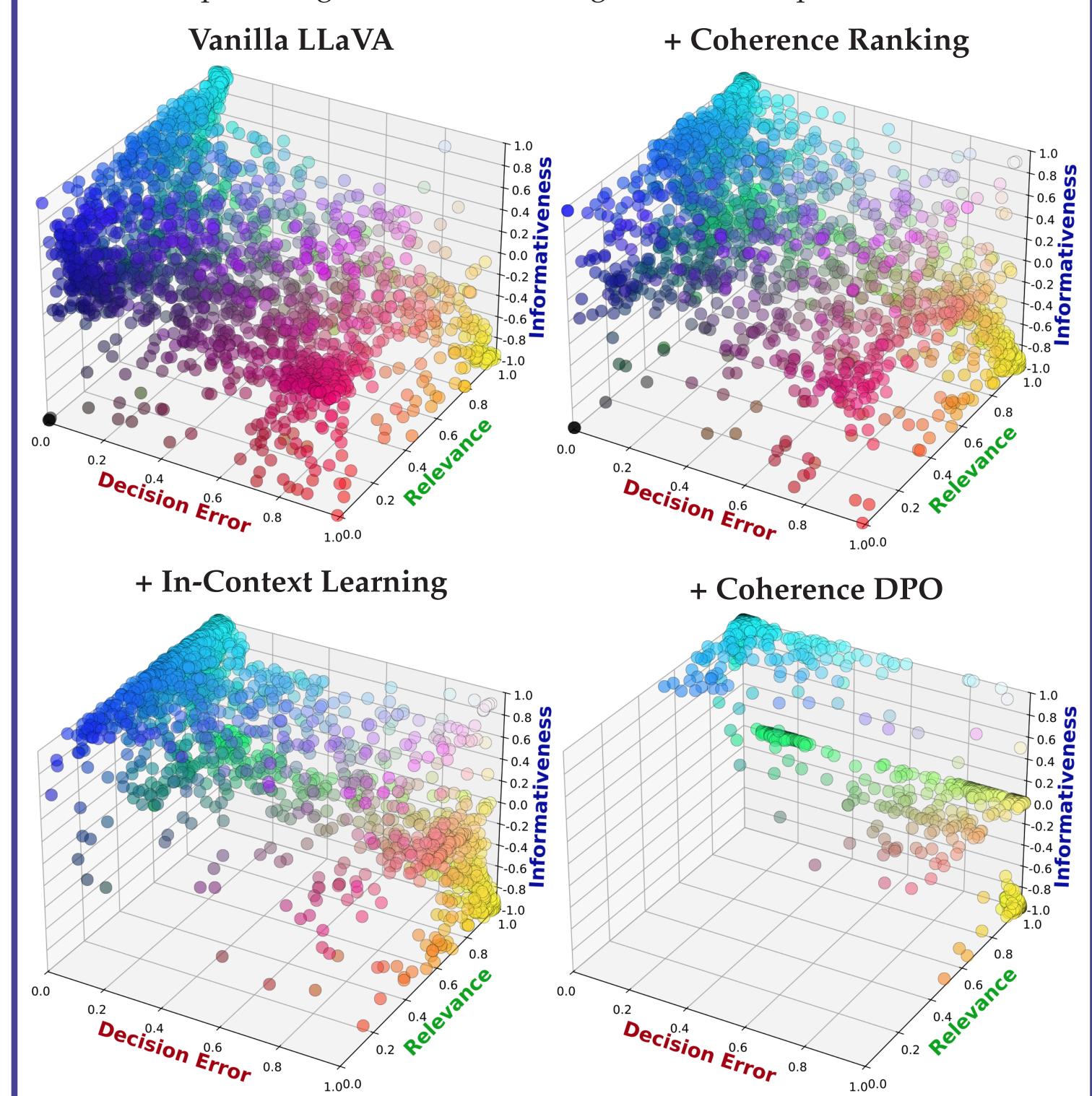
Ranking	ICL	Acc. ↑	Rel. ↑	Inf. ↑	# Iter. ↓	Info. Gain †
Likelihood	X	60.7	40.3	.259	3.25	.435
Likelihood		61.8	36.5	.272	3.34	.429
Coherence	X	61.4	66.5	.321	3.06	.540
Coherence		67.8	75.5	.464	3.46	.663

We then fine-tune LLaVA for question generation with our coherence metrics, using DPO [3] over question pairs generated from training data:

Ranking	ICL	Acc. ↑	Rel. ↑	Inf. ↑	# Iter. ↓	Info. Gain †
Likelihood	X	62.2	75.7	.318	2.33	.617
Likelihood	\checkmark	63.7	58.5	.330	2.67	.548
Coherence	X	62.3	92.2	.340	2.06	.719
Coherence	√	64.2	95.0	.304	1.81	.742

PERFORMANCE ANALYSIS

Our metrics provide global and local insights into VLM performance:



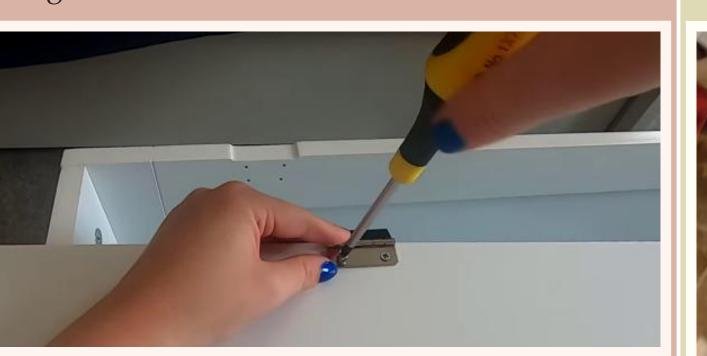
Label: ✓ Predicted: < 1. Is the sink brush in the person's hand? Yes

C: Put the trowel in a bin.

Predicted: X Label: ✓ 1. Is the trowel in a bin? No

D: Put the bottle in the cabinet.

B: Tighten the screw.



Label: ✓ Predicted: X

Rationale:

- 1. Is the person wearing gloves? No
- 2. Is the person wearing protective gear? No 3. Is the person wearing a mask? No

Predicted: < Label: X 1. Is the bottle in the cabinet? Yes